

Welcome to pyelectro’s documentation!

Tool for analysis of electrophysiology in Python.

This package was originally developed by Mike Vella. This has been updated by
Padraig Gleeson and others (and moved to NeuralEnsemble) to continue development
of pyelectro and Neurotune for use in OpenWorm, Open Source Brain and other projects

Contents:

Source documentation

	pyelectro Package
	analysis Module

Indices and tables

	Index

	Module Index

	Search Page

pyelectro Package

analysis Module

Module for mathematical analysis of voltage traces from electrophysiology.

AUTHOR: Mike Vella vellamike@gmail.com

	
class pyelectro.analysis.IClampAnalysis(v, t, analysis_var, start_analysis=0, end_analysis=None, target_data_path=None, smooth_data=False, show_smoothed_data=False, smoothing_window_len=11, max_min_method=<function max_min>, verbose=False)

	Bases: pyelectro.analysis.TraceAnalysis

Analysis class for data from whole cell current injection experiments

This is designed to work with simulations of spiking cells or
current clamp experimental data.

A lot of the logic here is hardcoded to work well with Cortical Layer II/III
Pyramidal cells in Rats.

	Parameters:	
	v – time-dependent variable (usually voltage)

	t – time-vector

	analysis_var – dictionary containing parameters to be used
in analysis such as delta for peak detection

	start_analysis – time t where analysis is to start

	end_analysis – time in t where analysis is to end

	
analysable_data

	

	
analyse()

	If data is analysable analyses and puts all results into a dict

	
plot_results()

	Method represents the results visually.

	
class pyelectro.analysis.NetworkAnalysis(volts, t, analysis_var, start_analysis=0, end_analysis=None, smooth_data=False, show_smoothed_data=False, smoothing_window_len=11, verbose=False)

	Bases: object

Analysis class for networks of spiking cells, mainly simulation data

	Parameters:	
	v – time-dependent variable (usually voltage)

	t – time-vector

	analysis_var – dictionary containing parameters to be used
in analysis such as delta for peak detection

	start_analysis – time t where analysis is to start

	end_analysis – time in t where analysis is to end

	
analyse(targets=None, extra_targets=None)

	Analyses and puts all results into a dict

	
class pyelectro.analysis.TraceAnalysis(v, t, start_analysis=0, end_analysis=None)

	Bases: object

Base class for analysis of electrophysiology data

Constructor for TraceAnalysis base class takes the following arguments:

	Parameters:	
	v – time-dependent variable (usually voltage)

	t – time-array (1-to-1 correspondence with v_array)

	start_analysis – time in v,t where analysis is to start

	end_analysis – time in v,t where analysis is to end

	
plot_trace(save_fig=False, trace_name='voltage_trace.png', show_plot=True)

	Plot the trace and save it if requested by user.

	
pyelectro.analysis.ap_integrals(v, t)

	TODO:explain this fn

	
pyelectro.analysis.broadening_index(v, t)

	TODO:explain this fn
TODO:add logging to this module

	
pyelectro.analysis.burst_analyser(t)

	Pearson’s correlation coefficient applied to interspike times

	Parameters:	t – Rank-1 array containing spike times

	Returns:	pearson’s correlation coefficient of interspike times

	
pyelectro.analysis.centered_slice(v, index, length=5)

	Retruns slice of given length centred on index.

	
pyelectro.analysis.elburg_bursting(spike_times)

	bursting measure B as described by Elburg & Ooyen 2004

	Parameters:	spike_times – sequence of spike times

	Returns:	bursting measure B as described by Elburg & Ooyen 2004

	
pyelectro.analysis.exp_fit(t, y)

	Fits data to an exponential.

Returns K for a formula of the type y=A*exp(K*x)

	param t:	time vector

	param y:	variable which varies with time (such as voltage)

	
pyelectro.analysis.filter(t, v)

	

	
pyelectro.analysis.inflexion_spike_detector(v, t, threshold=0.4, indices=False, max_data_points=2000, voltage_threshold=-30)

	Computes spike start and stop times based on extent of
voltage deflection.

This function requires some familiarity with Python to understand.

	Parameters:	indices – whether to return tuples of indices for each spike or times

:return list of tuples with start and end indices of every AP

	
pyelectro.analysis.linear_fit(t, y)

	Fits data to a line

	Parameters:	
	t – time vector

	y – variable which varies with time (such as voltage)

	Returns:	Gradient M for a formula of the type y=C+M*x

	
pyelectro.analysis.load_csv_data(file_path, delimiter=', ', plot=False)

	Extracts time and voltage data from a csv file

Data must be in a csv and in two columns, first time and second
voltage. Units should be SI (Volts and Seconds).

	Parameters:	file_path – full file path to file e.g /home/mike/test.csv

	Returns:	two lists - time and voltage

	
pyelectro.analysis.max_min(a, t, delta=0, peak_threshold=0.0, verbose=False)

	Find the maxima and minima of a voltage trace.

:note This method does not appear to be very robust when comparing to experimental data

	Parameters:	
	a – time-dependent variable (usually voltage)

	t – time-vector

	delta – the value by which a peak or trough has to exceed its
neighbours to be considered outside of the noise

	peak_threshold – peaks below this value are discarded

	Returns:	turning_points, dictionary containing number of max, min and
their locations

Note

minimum value between two peaks is in some ways a better way
of obtaining a minimum since it guarantees an answer, this may be
something which should be implemented.

	
pyelectro.analysis.max_min_interspike_time(t)

	Calculate the maximum & minimum interspike interval from the list of maxima times

	Parameters:	t – a list of spike times in ms

	Returns:	(max, min) interspike time

	
pyelectro.analysis.max_min_simple(a, times, delta=0, peak_threshold=0.0, verbose=False)

	

	
pyelectro.analysis.mean_spike_frequency(t)

	Find the average frequency of spikes

	Parameters:	t – a list of spike times in ms

	Returns:	mean spike frequency in Hz, calculated from mean interspike time

	
pyelectro.analysis.minima_phases(max_min_dictionary)

	Find the phases of minima.

Minima are found by finding the minimum value between sets of two peaks.
The phase of the minimum relative to the two peaks is then returned.
i.e the fraction of time elapsed between the two peaks when the minimum
occurs is returned.

It is very important to make sure the correct delta is specified for
peak discrimination, otherwise unexpected results may be returned.

	Parameters:	max_min_dictionary – max_min_dictionary

	Returns:	phase of minimum relative to peaks.

	
pyelectro.analysis.phase_plane(t, y, plot=False)

	Return a tuple with two vectors corresponding to the phase plane of
the tracetarget

	
pyelectro.analysis.pptd(t, y, bins=10, xyrange=None, dvdt_threshold=None, plot=False)

	Returns a 2D map of x vs y data and the xedges and yedges.
in the form of a vector (H,xedges,yedges) Useful for the
PPTD method described by Van Geit 2007.

	
pyelectro.analysis.pptd_error(t_model, v_model, t_target, v_target, dvdt_threshold=None)

	Returns error function value from comparison of two phase
pptd maps as described by Van Geit 2007.

	
pyelectro.analysis.print_comment(text, print_it=False, warning=False)

	

	
pyelectro.analysis.print_comment_v(text, warning=False)

	

	
pyelectro.analysis.single_spike_width(y, t, baseline)

	Find the width of a spike at a fixed height

calculates the width of the spike at height baseline. If the spike shape
does not intersect the height at both sides of the peak the method
will return value 0. If the peak is below the baseline 0 will also
be returned.

The input must be a single spike or nonsense may be returned.
Multiple-spike data can be handled by the interspike_widths method.

	Parameters:	
	y – voltage trace (array) corresponding to the spike

	t – time value array corresponding to y

	baseline – the height (voltage) where the width is to be measured.

	Returns:	width of spike at height defined by baseline

	
pyelectro.analysis.smooth(x, window_len=11, window='hanning')

	Smooth the data using a window with requested size.

This function is useful for smoothing out experimental data.
This method utilises the convolution of a scaled window with the signal.
The signal is prepared by introducing reflected copies of the signal
(with the window size) in both ends so that transient parts are minimized
in the begining and end part of the output signal.

	Parameters:	
	x – the input signal

	window_len – the dimension of the smoothing window; should be an odd integer

	window – the type of window from ‘flat’, ‘hanning’, ‘hamming’, ‘bartlett’, ‘blackman’, flat window will produce a moving average smoothing.

	Returns:	smoothed signal

example:

t=linspace(-2,2,0.1)
x=sin(t)+randn(len(t))*0.1
y=smooth(x)

See also

numpy.hanning
numpy.hamming
numpy.bartlett
numpy.blackman
numpy.convolve
scipy.signal.lfilter

	
pyelectro.analysis.spike_broadening(spike_width_list)

	Returns the value of the width of the first AP over
the mean value of the following APs.

	
pyelectro.analysis.spike_covar(t)

	Calculates the coefficient of variation of interspike times

	Parameters:	t – Rank-1 array containing spike times

	Returns:	coefficient of variation of interspike times

	
pyelectro.analysis.spike_frequencies(t)

	Calculate frequencies associated with interspike times

	Parameters:	t – a list of spike times in ms

	Returns:	list of frequencies in Hz associated with interspike times and
times associated with the frequency (time of first spike in pair)

	
pyelectro.analysis.spike_widths(y, t, max_min_dictionary, baseline=0, delta=0)

	Find the widths of each spike at a fixed height in a train of spikes.

Returns the width of the spike of each spike in a spike train at height
baseline. If the spike shapes do not intersect the height at both sides
of the peak the method will return value 0 for that spike.
If the peak is below the baseline 0 will also be returned for that spike.

	Parameters:	
	y – voltage trace (array) corresponding to the spike train

	t – time value array corresponding to y

	max_min_dictionary – precalculated max_min_dictionary

	baseline – the height (voltage) where the width is to be measured.

	Returns:	width of spike at height defined by baseline

	
pyelectro.analysis.three_spike_adaptation(t, y)

	Linear fit of amplitude vs time of first three AP spikes

Initial action potential amplitudes may very substaintially in amplitude
and then settle down.

	Parameters:	
	t – time vector (AP times)

	y – corresponding AP amplitude

	Returns:	Gradient M for a formula of the type y=C+M*x for first three action potentials

	
pyelectro.analysis.voltage_plot(t, v, title=None)

	Plot electrophysiology recording.

	
pyelectro.analysis.window_peak_detector(v, delta=0.01)

	Detects peak by comparing mean of either side of
peak and deciding whether it exceeds some threshold.

	Returns:	Boolean, True if a peak is detected in that window

	
pyelectro.analysis.y_from_x(y, x, y_to_find)

	Returns list of x values corresponding to a y after a doing a
univariate spline interpolation

	Parameters:	
	x – x-axis numerical data

	y – corresponding y-axis numerical data

	y_to_find – x value for desired y-value,
interpolated from nearest two measured x/y value pairs

	Returns:	interpolated y value

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyelectro	

 	
 	
 pyelectro.analysis	

Index

 A
 | B
 | C
 | E
 | F
 | I
 | L
 | M
 | N
 | P
 | S
 | T
 | V
 | W
 | Y

A

 	
 	analysable_data (pyelectro.analysis.IClampAnalysis attribute)

 	analyse() (pyelectro.analysis.IClampAnalysis method)

 	(pyelectro.analysis.NetworkAnalysis method)

 	
 	ap_integrals() (in module pyelectro.analysis)

B

 	
 	broadening_index() (in module pyelectro.analysis)

 	
 	burst_analyser() (in module pyelectro.analysis)

C

 	
 	centered_slice() (in module pyelectro.analysis)

E

 	
 	elburg_bursting() (in module pyelectro.analysis)

 	
 	exp_fit() (in module pyelectro.analysis)

F

 	
 	filter() (in module pyelectro.analysis)

I

 	
 	IClampAnalysis (class in pyelectro.analysis)

 	
 	inflexion_spike_detector() (in module pyelectro.analysis)

L

 	
 	linear_fit() (in module pyelectro.analysis)

 	
 	load_csv_data() (in module pyelectro.analysis)

M

 	
 	max_min() (in module pyelectro.analysis)

 	max_min_interspike_time() (in module pyelectro.analysis)

 	
 	max_min_simple() (in module pyelectro.analysis)

 	mean_spike_frequency() (in module pyelectro.analysis)

 	minima_phases() (in module pyelectro.analysis)

N

 	
 	NetworkAnalysis (class in pyelectro.analysis)

P

 	
 	phase_plane() (in module pyelectro.analysis)

 	plot_results() (pyelectro.analysis.IClampAnalysis method)

 	plot_trace() (pyelectro.analysis.TraceAnalysis method)

 	pptd() (in module pyelectro.analysis)

 	
 	pptd_error() (in module pyelectro.analysis)

 	print_comment() (in module pyelectro.analysis)

 	print_comment_v() (in module pyelectro.analysis)

 	pyelectro.analysis (module)

S

 	
 	single_spike_width() (in module pyelectro.analysis)

 	smooth() (in module pyelectro.analysis)

 	spike_broadening() (in module pyelectro.analysis)

 	
 	spike_covar() (in module pyelectro.analysis)

 	spike_frequencies() (in module pyelectro.analysis)

 	spike_widths() (in module pyelectro.analysis)

T

 	
 	three_spike_adaptation() (in module pyelectro.analysis)

 	
 	TraceAnalysis (class in pyelectro.analysis)

V

 	
 	voltage_plot() (in module pyelectro.analysis)

W

 	
 	window_peak_detector() (in module pyelectro.analysis)

Y

 	
 	y_from_x() (in module pyelectro.analysis)

pyelectro

	pyelectro Package
	analysis Module

 nav.xhtml

 Table of Contents

 		Welcome to pyelectro's documentation!

 		pyelectro Package

 		analysis Module

_static/file.png

_static/plus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_static/down.png

_static/up.png

_static/minus.png

_static/comment-close.png

